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VIBRATION AND STABILITY ANALYSIS OF 
COMPRESSED ROCKET VEHICLES 

SUMMARY 

Because rocket vehicles are exposed to large axial loads caused by the thrust and 
the inertia forces of the vehicle masses ,  the stability problem is important. 
of this kind are nonconservative. 
dynamic stability cri terion must be applied. 
a vibration analysis of the loaded system. The analysis developed in this report  is a 
transfer-matrix method based on ordinary and Timoshenko's beam theory. To simplify 
the procedure the vehicle was modeled by a lumped-mass system and was assumed to be 
longitudinally rigid. 
play an important role in reducing the cri t ical  load imposed. For  this reason, damping 
should be the subject of additional studies. To study the influence of mass  and stiffness 
distribution the analysis has been applied to several  characterist ic cases. 
Saturn V three-stage vehicle has been investigated. 
problem may be for highly accelerated missi les ,  this analysis indicates that for  modern 
launch vehicles the acceleration is far removed from critical values. 

Problems 
To ensure proper calculation of the critical load the 

Such calculation requires performance of 

F o r  convenience, damping was neglected. Of course,  damping may 

Finally, a 
However important the stability 

SECTION I. INTRODUCTION 

During powered flight, rocket vehicles are heavily loaded by thrust and inertia 
forces of the vehicle masses;  these loads produce large axial forces. 
the problem of stability is significant. 

Fo r  this reason, 

To determine the critical load of any loaded elastic system, generally three 
stability cr i ter ia  are available (Ref. I). 

I. The Dynamic Criterion: 

The critical load is the smallest  load which when unbalanced by a sufficient 
disturbance causes a significant departure from the equilibrium position. 

2. The Static (Euler) Criterion: 

The critical load is the smallest  load under which a nontrivial equilibrium 
posit ion exists . 



The crit ical  load is the smallest load under which the total potential energy of 
the system is no longer positive definite. 

The Dynamic Criterion follows directly from the definition of a stable equilibrium: 

If a small  disturbance applied on a system results in small  vibrations about the 
equilibrium position, the position is called stable. 

As shown in Reference i, the Dynamic Criterion is the most general of the three. 
To obtain the Critical Load of any system , this first cri terion may be applied; while the 
application of the second o r  third cri terion to so-called nonconservative systems may re- 
sult in failure. The classification into conservative and nonconservative systems is based 
on the nature of the loads. An elastic system may lose its conservative character since 
the external loads cannot be derived from a stationary unique potential. In Reference I 
it is shown that, for  instance, a cantilever beam with a load of constant amount acting in 
the tangent of its free end represents such a nonconservative system. 

To apply the Dynamic Criterion to the case under consideration, system and 
equilibrium position must be defined. The loaded system consists of the vehicle and the 
thrust vector of constant value acting a t  all t imes in the vehicle end tangent. To explain 
the equilibrium position the vehicle may be referred to a body-fixed system of coordinates 
whose x-axis coincides with the undisturbed vehicle axis. If there is no external dis- 
turbance, the vehicle accelerated by the thrust moves straight ahead in the direction of 
the thrust. All the acting forces , namely the thrust and the inertia forces , lie in the long 
axis of the body. Hence, no lateral deformation, no motion of the vehicle masses  relative 
to the body-fixed, moving coordinate system will occur. This is the (tr ivial)  equilibrium 
position. Yet, a sufficiently small  disturbance will cause small  lateral oscillations about 
this position. ( Longitudinal and torsional oscillations will not be considered here. ) 

For  the same reason as in the above-mentioned case of a cantilever beam with a 
constant tangential load on its free end (Ref. I) , the problem under consideration is also 
a nonconservative one. 
applied. 

To ensure proper solutions the Dynamic Criterion should be 

From the definition of stable equilibrium , application of the Dynamic Criterion 
implies a vibration analysis of the loaded system. 
the smallest load which separates the domain of stability from that of instability. The 
latter domain is characterized by amplitudes increasing with time but without limit. :::) 

To apply the cri terion one must find 

X: ) The vibration analysis considered is based on l inear theory; its validity is therefore 
restricted to small  vibrations. 
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I 

A s  explained in Reference I, two possibilities exist for  cross-over from one domain to 
the other. Either the crossing point means a nontrivial equilibrium position (Euler ' s  
static case) o r  the instability domain will be reached without occupying such a position at 
any smaller  load. In the first case,  all three cr i ter ia  a r e  ap- 
plicable; in the second case,  only the f i r s t  is applicable. All conservative problems be- 
long to the first group; but nonconservative problems may belong to the first o r  second 
group. Since some special considerations (Ref. 2 )  a r e  essential for  recognition of the 
behavior of nonconservative systems,  application of the first (dynamic) cri terion is recom- 
mended in all cases. 

This is the dynamic case. 

The above-mentioned vibration analysis of a loaded system consists in the solution 
of a eigenvalue problem. For  any given load, eigenvalues 

A - i = l ,  2 ,  3 ,  .... i ' 

must be determined which assure solutions of the problem. 
solution representing a mode of vibration of the system. 
tions are given by 

Each eigenvalue yields a 
The frequencies of these vibra- 

1 1 -  
f . =  - L?.= - IJh 
1 27r 1 27r i 

It is well known that instability is caused by complex frequencies. By plotting 

Considering the case in question, the independent variable may be 
eigenvalues o r  frequencies versus  load one recognizes ra ther  easily the character of a 
stability problem. 
the thrust force T--or better--the acceleration of the center of gravity: 

where Ma is the total vehicle mass. 
the positive frequencies of the unloaded vehicle. 
increases) lead to frequency curves which may show one o r  both of the following two 
characterist ics:  coalescence of adjacent frequencies o r  junction with the x-axis. 
first case yields a double frequency f at a certain o!k (Fig. 1) and obviously if 

Plotting of the frequencies may start at o! = 0 with 
The variations of the frequencies (as o! 

The 

two of the natural frequencies are conjugate complexes. 
a dynamic instability while in the second case  (Fig. 2 )  the junction a t  o! = a s  with the 
x-axis means f = 0 and hence, characterizes the Euler--or static instability (nontrivial 
equilibrium position) . 

Hence, this case characterizes 

Finally, the analysis results in the cri t ical  acceleration 

= min. (q, a s )  Ocrit. 



A fiocket vehicle has, in general, highly nonuniform mass  and stiffness distribub 
tions. A rocket vehicle must be modeled by an adequate lumped-parameter system that 
represents as closely as possible the dynamic behavior of the actual structure. 
a lumped-mass system will be used. A lumped-mass system has discrete mass  points 
located on the axis of a massless beam having constant stiffness between successive mass  
points (Fig. iia) . The analysis presented in this report  is restricted to such systems; 
however, extensions to more accurate models are possible without difficulties. 

Generally, 

The developed vibration analysis is a transfer-matrix method. Its derivation 
based on ordinary and Timoshenko's beam theory is presented in Sections IV and V. Be- 
cause of the mathematical difficulties involved in taking into account a physically reason- 
able damping assumption, no damping is considered in this analysis. Application of the 
analysis (Section III) indicates that modern launch vehicles are sufficiently stiff to keep 
their  acceleration of 5 to 6 g's distant from crit ical  values. At most,  it may be of some 
interest to know the frequency variation within this low g-interval. However, as proved 
in Reference i ,  damping plays an important role in the stability of nonconservative sys- 

' tems (see also Reference 3 ) .  Damping may reduce the cri t ical  load considerably. Hence, 
this analysis should be considered as a first step only. Inclusion of damping is suggested 
for  further studies. 

The external forces acting on the system masses  are the inertia forces of the 
vehicle motion. Because of the vehicle rotation and deformation, these forces a r e ,  in 
general, of a complicated nature. These forces contain components originating from 
centrifugal, Coriolis, and other accelerations. A s  shown in the Appendix, several of 
these components may be neglected under the restriction to small distortions. 

SECTION II. SIMPLF: LUMPED MASS SYSTEMS 

As mentioned before, rocket vehicles during powered flight are loaded by thrust 
and the inertia forces of the vehicle masses. Therefore, in addition to the stiffness, the 
mass  distribution is a determining factor of the stability. This is valid,in general,,'for 
nonconservative systems, In Reference I the following statement is proved: 

rrIn nonconservative systems , under otherwise equal conditions, the critical load 
depends highly on the mass  distribution. I t  

At first, simple lumped-mass systems may serve for  studying the influence of 
mass  and stiffness distributions. The investigation of four typical cases  are presented 
below. M a s s  and stiffness data of these cases  are taken as averages from the Saturn V 
three-stage launch vehicle of Section 111. 

I. Equal, equidistant mass  points on a uniformly stiff beam. 

Figure 3 shows distribution of mass  and stiffness as well as the acceleration- 
frequency plot of a five-mass system. Ordinary and Timoshenko's beam theory are applied. 
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The plot shows that no nontrivial equilibrium position exists. The crit ical  acceleration 
is approximately 43.2gi fo r  the ordinary beam and 34.4g for  the Timoshenko beam. Ocrit. 

Mode shape and frequencies at a = 0 and a = 43. I g (ordinary beam case) are shown by 
Figure 4. At  a = 43. I g: the differences between the two first frequencies and, mode shapes 
are already quite small. 

Better distribution of the total beam mass  will increase the cri t ical  acceleration. 
Figure 5 shows these cri t ical  values of the same uniformly stiff beam having 5, 7, 8, 9,  
11, 14, 15, 17, 19, 20, 21, equal, equidistant point masses  of the same total amount. 
Apparently, these values approach the cri t ical  acceleration of the uniform beam asymptoti- 
cally. 

2. Top-heavy five-mass system. 

Figwre 6 shows the acceleration-frequency plot of a five-mass system having 
the same stiffness as that represented by Figure 3. Also, the stations ca r ry  the same 
amount of mass  and mass  moment of inertia--but distances between stations have changed. 
Instead of 4 equal distances 1 between the point masses ,  there are now the distances 
. 5  1, .75 1, '1.25 1, 1.50 1. 

The a-f plot now shows dynamic *and static instabilities. The crit ical  accelerations 
a r e  gcrit. = 22.07g and acr i t .  = 19.06g for  the ordinary and Timoshenko beam cases  
respectively. These accelerations are now determined by static (Euler ' s )  instabilities. 
Figure 7 shows the nontrivial equilibrium position of both cases. 

3. Tail-heavy f ive-mass system. 

A s  shown by Figure 8 this system is that of Figure 6 , but reoriented by 180". 
The a-f plot shows, in genera1,the same .behavior as in case 2. 
however, of both cases  (ordinary and Timoshenko beam) a r e  higher. 

The crit ical  accelerations, 

4. Tail-heavy and tail-stiff five-mass system. 

M a s s  and stiffness data of this system (Fig. 9) show already the character- 
istics of rocket vehicles. 
however, the critical loads of both cases  (ordinary and Timoshenko beam) are determined 
by dynamic instabilities. 
of the second and third frequencies. 

Static and dynamic instabilities are c lear  from the a-f plot; 

It is noticeable that these instabilities arise from coalescence 

SECTION III. SATURN V THREE-STAGE VEHICLE 

M a s s  and stiffness data of the Saturn V three-stage vehicle are given in Table I. 
Figure 10 shows the a-f plots for the ordinary and Timoshenko beam case. A s  in the 

5 



case I1 4, the f, curves c ross  the a-axis while the f ,  and f 3  curves coalesce. In the 
Timoshenko beam case  the cri t ical  acceleration is dynamic in nature; it is determined by 
the coalescence of f,  and f3. In the ordinary beam case the accelerations of both instabili- 
ties are nearly equal. 

A s  already mentioned in Section I, the acceleration of the Saturn V vehicle will 
not reach 7g. Fo r  this reason, the a-f plot is highly theoretical. Of some interest ,  
however, is the variation of frequencies in this low g-range. Table 2 shows the first 
three frequencies for  a = g,  2g, . . .8g. It can be seen that these variations are very 
small. 

There is another interesting fact. Nonconservative vibration problems belong to 
the nonselfadjoint eigenvalue problems. A s  is well known, the eigenfunctions of such 
eigenvalue problems do not satisfy the orthogonality relations. 
tems having n stations, these relations are given by 

For lumped-mass sys- 

j f k  

(miYjiYki + pi ejieki) = o 
i= i 

where the columns 

(ordinary beam case)  

(Timoshenko beam case) 

(ordinary beam) 

6 



th are the j eigenvectors, while 

(Timoshenko beam) 

are mass  and mass  moment of inertia respectively at the station i. 

E a! = z g  = 0 the orthogonality relations are exactly satisfied. A s  (Y increases,  
deviations from zero are generated. For  the case under discussion Table 3 shows these 
deviations of the three lowest modes. The values in the first row (z = 0) represent 
calculation errors .  

SECTION N. TRANSFER MATRIX 
METHOD BASED ON ORDINARY BEAM THEORY 

Figure i i a  shows a rocket vehicle simplified to a lumped-mass system which is 
referred to a body-fixed system of coordinates (x ,  y,  z) with x positive to the right, The 
vehicle axis coincides with the x-axis, mass  point 1 at the origin. On the right end of 
the vehicle the thrust T acts in the negative x-direction. 

If only the force T is acting (no gravitational forces) the vehicle moves with ac- 
celerated, straight-line motion in the direction of the negative x. T and the inertia forces 
of the beam masses  constitute a system of equilibrium, and since all forces act  in the 
vehicle axis,  no relative motion between the vehicle masses  occurs. This is the equili- 
brium state. A sufficient small  disturbance at t = 0 causes small oscillations of the mass  
points about the x-axis. The plane of oscillation is assumed to  coincide with the x,  y 
plane of the body-fixed system. 
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Figure l i b  shows the system a t  a time t # 0. 0nly.the ith mass  point is sketched. 
Its coordinates a r e  xi ,  y i  = y (xi, t) , its mass  mi. The postulates that the axis is fixed 
in the body (the center of mass  of the system remains on the x-axis) and that there is no 
rotation of the system about an axis perpendicular to the xy-plane, may be expressed by 

i m i y i = o  
i=l 

th at t # 0, the i mass  is attacked by the forces:  

( 3) -m. '3; i =  I, 2,  ... n *)  

H i ,  Vi i =  i ,  2, ... n ( 4) 

( 3 )  represents the inertia forces of the oscillatory motion while the forces (4) a r e  
the inertia forces caused by the accelerated motion of the vehicle. The forces (4) , there- 
fore ,  have to satisfy the following equilibrium conditions. 

V i = T y l  n 
i= 1 

::) Here and on the succeeding pages , the notations 

(5 )  

i x = x  
T = t  

will be used. 

8 



Using the notations: 

77 x-coordinate of the C. M. 

& angle acceleration about the C. M. I 

1 
t the forces (4) a r e  given by 

H .  = -m. a 

Vi = -m- 1 [a v+cj ( x i -  q ) l .  

1 1 vi 

A derivation of equations (7)  in detail is given in the Appendix. 
may be concluded 

From Figure l i b ,  it 

where 
n. 

i= i 
I,= xi 2 m i - q  2 M, 

From equations (8 )  it follows 

T- I - - -  
- - - - a  

Ma 

a = - a y ;  
772 

(7)  

9 



where 
T I 
S r 2  = - 

Ma 

Insertion of the expression (9 )  into equations (7) yields: 

Now it is easy to see  that Hi, V i  satisfy equations (5 ) .  

Using the notations: 

the second equation ( il) may be written as follows: 

V i  = a PigYn + a PidYhe 

The distortions yi, yi  ( i  = 1, 2 . . . n) a r e  exposed to the same time law 

cos (Qt + @) ( 14) 

A s  usual, this time factor will be cancelled. 
used notations may be retained. Then in Figures i i b  and 12a 

Because no misconception is expected, the 
has to be replaced by 

- A Y i  

where A =  Q2 

Then, from Figure 12a and equation (13) the following equilibrium conditions may be 
concluded 

10 



M C  = M  i 

I QP = - Ami yi + Qi - a! pi3jTn - a! pi, Y;. 

The state in a certain point of the beam is known if the distortions, and also 
internal and external forces acting in this point, a r e  given. Hence, to describe the state,  
deflection, and slope, moment and shear  a r e  necessary for  that purpose. Since the shear  
force depends on yn and yA ( s e e  eq. 13) these two quantities must be added to the four 
others mentioned before. On 
the left side of the ith mass  this vector is 

These s ix  quantities may be written as the state vector. 

Similarly, the state on the right side of station i is given by (Fig. 12a) 

A s  equations (16) show, the two state vectors a r e  linearly related by 



where Ti is the following matrix 

I 0 0 0 

0 I 0 0 

0 0 1 0 

-Ami 0 0 I 

0 0 0 0 

0 0 0 0 

Sometimes Ti is called inertia matrix. 

An analogous relation exists between the state vectors yi and y c :  (Fig. 12b) 

where si is the stiffness matrix, 
differential equation 

To determine si it is necessary a t  f i r s t  to solve the 

M 
E Ii 

y" = - - 

with the boundary conditions ( s e e  Fig. 12b) 

[ = 0; y = yi; y' = y;; ( 22) 

where Ii is the (constant) cross-sectional moment of inertia between stations i and i + I, 
E is Young's modulus of elasticity and 

< = x - x  i (23) 

M is a function of 5 ,  from Figure 12b it can be seen that 

M ( 5 )  = M F  + [ QC + ( y  - yi) Nf ( 24) 

and N? = Ni + H i  = Ni + (Y m i' ( 25) 

12 



The latter relation follows from the first equation (ii) . 
Insertion of equation (24 )  into equation (211 yields 

with the abbreviation 

N T  1; 
p ; = - .  E Ii 

The general solution of the differential equation (26)  is: 

Proof by insertion. Derivation of equation (28 )  with respect to gives 

Using the boundary conditions (22)  it follows from equations (28)  and (29)  

Setting x = x  one obtains from equations (28)  , ( 29) , (30)  , and (31)  i+i ' 

sin pi cos pi - i 
= y i  +- li y' + N '& Mi* 

i Yi+i P i  i 

+ -  Ni* li c:iPi, - - i )  Q: 



- sin pi li * cos pi - 1 
y ;+* Pi  EIi Mi + N* i QT 3 y; cos pi - - - - 

With the notations: 

s in  p,  
7 cos p. = a. 1 1  

1 .  = 6i 
1 pi 

equations (32 )  and (33 )  go over in 

+a!') Q:. 
Mi 1 

y;+i = a. y! + ai 
1 1  

From equation (24)  it follows for  5 = li 

gc $C Mi+i = - N T  yi + Mi + l iQi  + N: yi+i 

Now, replacement of y by equation (35 )  and application of equation (34 )  yields i+i 

*< = NJF 6. y: + ai M "  + di Qi 
Mi+i 1 1 1  i 

where 6. and a. are given by equations ( 3 4 ) .  
1 1 

(33)  

( 37) 
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Finally, as shown by Figure 12b 

Qi+* = Qf ( 38) 

The equations (35 )  , (36)  , (37 )  , and ( 38) , - and in addition two identities for yn and yh 
form the linear system (20)  whose matrix Si is given by 

- s. = 
1 

i 

0 0 

0 0 0 i 0 

6i 0-. N: di 1 

0 0 0 0 i 

0 0 0 0 0 

Repeated application of the operations ( 18) and (20) yield 
- 

= L Fl - *c 

y n 

where 
- 
L = ( l&)  

and 

-* = 
Yn 

Yn 

_ -  - - -  
- - Tn ‘n-1 Tn-i . . . SI TI 

(39 )  

15 



It is well known that the boundary conditions may be inserted into these vectors. 
The left end is free, therefore 

MI = 0 

Qi = 0 

while on the right side,  the conditions are \ 

( 43) 

Determination of M * and Q * by the external loads (3) and (4) changes equations n n 
(44) into 

Now, application of equations (5) converts equations (45) into 

n 

i=l 
A m i y i x i  = o 

and 

A m i y i  = 0 
i= I 

Without regard to the factor  A these two equations, however, are the equations (2). 
Hence, it follows, realization of the conditions ( 44) ensures that the coordinate system 
used is body-fixed. 

Equations (40) , (41) , and (42) with the boundary conditions (43) and (44) result 
in a l inear homogeneous system of equations for  the unknowns 
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This system is solvable only if 

A =  

122 l-25 121 

135 - '32 - 
A A 

l31 
A 
- 

l 4 2  145 l41  - - - 
h A A 

0 

' = o  
'n 

l16 

l26 - 

-- I36 
A 

l 4 6  + Q! Ma 
x 

I 
= o  

A is a polynomial of A with coefficients depending on a. If $ is a root of A = 0 then 

is a natural frequency of the vibrating system. 
of these equations: 

hser t ion  of Ak into (47) yields a SOlUtiOn 

yki = I; YL,; Y b ;  Yk 
Now in view of (43) , the state vector y1 is known. To obtain the kth mode shape 

17 
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hk has to be inserted in (19) and then the operations ( 18) and (20 )  , step-by-step applied. 
This procedure yields all the state vectors whose first components form the above mode 
shape. Finally multiplication of (49) by 

i 

gives the normalized kth mode shape. 

SECTION V. EXTENSION OF THE TRANSFER- 
MATRIX METHOD TO TIMOSHENKO BEAMS 

The transfer-matrix method based on Timoshenko's beam theory is characteris- 
tically analogous to the method based on ordinary beam theory. 
the changes a r e  discussed in the following pages; while in general, reference is made to 
the procedure outlined in Section Tv. 

For these reasons,  only 

Timoshenko's theory includes the effects of rotatory inertia and transverse shear 
deformation on beam bending. This means, on the one hand, the inclusion of external 
moments caused by the rotatory inertia of the beam masses;  on the other hand, it means 
that the beam deformation is now governed by two coupled differential equations--not one-- 
as in the ordinary beam case. 

Considering the lumped-mass system of Figures l i b  and 12 ,  the mentioned ex- 
ternal moments are 

-Pi gi; Ri; i =  1, 2 ,  ... n ( 50) 

where 

ei, Pi are rotation angle and m a s s  moment of inertia at station i, 

is the external moment contribution at station i caused by the accelerated 
beam rotation about its center of gravity. 

Ri 

Hence 

i R . = - &  P 
1 

where & is defined by the third equation ( 9).  
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The forces (50) act in addition to the external forces ( 3) and (4). 

The equations governing the beam deformation are 

7 
G A s i  (y '  - 8 )  = Q + N8 

i = l ,  2 . . .  n 

M 
E Ii 

13' = - -  

I 

where 

is the constant shear  a rea  between stations i and i + 1, si 
A 

G is the shear modulus of elasticity, 

8 (x ,  t) is the rotation angle of the beam element, 

Q ,  M y  N a r e  the internal forces of the beam. 

The term NO of the first equation represents the component of the longitudinal force which 
contributes to the shear deformation (Fig. 13). 

Changeover from Timoshenko's theory to the ordinary beam theory will be 
arranged by 

Because of the included rotatory inertia effect, 8 .( t) = 8 ( xit) is now equally en- 
titled to yi. Hence, it is convenient to describe the state using Bi instead of yi. However, 
the two quantities are related by the first equation (52) .  

* I  
Notice y' = ayo. (3' =aeo 

ax ax 
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The state vectors  before and after station i (Fig. 12a) are: 

Since it is assumed that the thrust is, at all  t imes,  perpendicular to the end cross  
section of the beam, no shear  deformation at this point can occur. 
equation ( 52) it follows: 

Thus, from the first 

n' Hence, in the state vectors (53 )  , y' may be replaced by 8 
n 

th The k mode shape is determined by 
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The normalization factor is given by 

(mi  y:i + pi OK,) 
i=i 

( 55) 

The conditions analogous (2 )  to keep the coordinate system at all t imes body-fixed 
a r e  now 

1 2 m . y .  = 0 
i= i 

5 ( m i x i y i  + p. e.) = 0 
i=i 

1 1  

1 1  

while the conditions, analogous to (5) are given by 

2 H . = T  
i= I 1 

n Vi =TO 
i= 1 

Under consideration of the third equation ( 9 )  and equation (54) the external 
moment (51) may be expressed by 

pi 
Ri = - a  T;Z [yn - ( L  - 71) en] 

where CI , r ,  ,,, L are defined by ( 6) equations ( 9) , ( 10) ,*I and Figure lla. 

*) Note: 
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Setting 

R.  may be presented as follows: 
1 

R ~ = Q I P .  y + a p  e 
11 n i Z  n 

Now y. and g. may be replaced by -Ayi and -Mi  where A is defined by equations 
1 

(14) and (15); 
equilibrium conditions may be concluded as 

Then, from Figure 12a, equations (3)  , (13) , (51) , and ( 5 8 ) ,  the 

- A piei + M~ +Q! p .  y 
+ 0 1  pi, en 

QT =-Am. y. + Qi - 01 p. y - 01 pi, en 
1 1  13 n 

M: - 11 n 

From (53) and equations (59) the inertia matrix,  which is defined by equation 
(18) , follows as 

- 
T. = 
1 

- 
I 

0 

0 

i -Am 

0 

0 - 

- 
0 0 0 0 0 

1 0 0 0 0 

a! Pii O1 pi, A P i  I 0 

0 0 1 -a! Pi, -a! Pi, 

0 0 0 I 0 

0 0 0 0 1 - 

( 59) 

To determine the stiffness matrix s. which is defined by equation (20) the linear 
system of differential equations ( 52) with the boundary conditions 

< = X - X . = O ;  1 y = y i ;  e = e i  (61)  

shall be solved. 
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From Figure 12b and the first equation (ii) it can be seen that 

7 

Elimination of e from equations ( 52) and from the boundary conditions ( 61) 
as also application of equations (62) gives: 

with the boundary conditions: 

where 

p; = - I +  - 

The differential equation (63) has the same shape as equation (26) .  Hence, the 
Also the solution y and its derivative y' are given formally by equations (28) and (29).  

integration constant A which follows from the f i r s t  boundary condition (64) is given by 
equation (30).  However, equation ( 29) and the second boundary condition (64) result in 

B = -  li ( I + -  :si) ( ei + 7 QjJ 

P i  

'6) Where the t ime factor is already removed. 
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Setting 
obtains finally 

= xi+i - xi = li from equations (28) (29) , (30) , (52) , (65) and (66) one 

cos pi - 1 
1. e i  + MT' 

Yi+i 1 Nl* 

and 

With the notations: 

u. - 1 
1 

N: 

6i - li 
Ni* 

cos pi = 0-. 
1 

Qi" 

( Q )  . = 6i , 

equations (67) and (68) go over in 

and 

( M )  M."" + u i  (a) Q: = u. 0 .  + 0-. 
i+i 1 1  1 1 
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I 

The equations'concerning moment and shear  may be obtained by the first 
two equations (62)  setting 5 = xi+l - xi = li 

Now, replacement of yi+i - yi by equation (70) and application of equations (69)  yields: 

where N z  , 6i, ai are given by the third equation (62)  and equations (69)  respectively. 

Equations (70) , (71) , (72)  , and (73)  , and two - identities for  yn and O n ,  form - a 
linear system whose matrix is the stiffness matrix S i  as defined by e uation 
agrees  formally with the matrix (39 )  , however, its elements 6i, ai') , 

20) .  S; 
, ai, 

, aJQ) are now given by equations (65)  and ( 6 9 ) .  
1 

The following considerations a r e  the same as those in the ordinary beam case. 
Application of the boundary conditions leads to the eigen-frequency determinant, and 
finally, to the determination of the mode shapes. 
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TABLE i SATURN V 3 STAGE LAUNCH VEHICLE;  MASS AND STIFFNESS DATA 

I 

2 
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‘12 179 
89 
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259 .  
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I 

-1 
I - -  
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TABLE 2 SATURN V 3 STAGE VEHICLE; THE FLRST THREE FREQUENCIES 

8 

f l  f 2  
IRDINARY-BEAX . -  .~ 
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3 484 
1.166 
... 2.206 

. .  3.477 
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. .  

. 2 199 ___ -. .. 

3.470 
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3 ~ 463 . 

2.186 

_=_ ~ 

..... 

___ __.. 1 .A54 

-_ ___ 3 456- 
. . .  l * W  
___ _ -  2-0179.~ 
__ 3.449 
-. 1.146 . 

- .  

... 2.172 
. .  3.441 
.. __  . 1 . I 142 

2.165 
. 3: 434 

.... 

1.138 
- .  

- 2 159 
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TABLE 3 SATURN V 3 STAGE LAUNCH VEHICLE;  DEVIATIONS FROM THE 
ORTHOGONALITY CONDITIONS O F  T H E  FIRST THREE NORMALIZED 
MODES 

-. - 

- 
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APPENDIX 

REPRESENTATION OF THE INERTIA LOADS REFERRED 
TO A BODY-FIXED COORDINATE SYSTEM 

The loads acting on the launch vehicle during powered flight consist of the thrust 
and the inertia forces of the vehicle masses. 
it is necessary to represent them in the body-fixed reference system of coordinates. 
The position of the thrust vector, whose amount is known, is at all times determined by 
deflection and slope of the vehicle end. 
of the vehicle masses  must be described in the accelerated, moving, body-fixed coordi- 
nate system. 

To make proper allowance for  these loads' 

To represent the inertia forces ,  the acceleration 

In general, the velocity vector of a point referred to a moving coordinate system 
is given by 

- -  - - d F  v = v  + w  r + -  
0 A dt 

CI 

where 

- 
v 

w 

r 

is the velocity vector of the origin, 

is the rotation vector of the coordinate system, 

dF i s  the relative is the location vector of the mentioned point,, hence - 
dt 

velocity vector. 

0 
- 

- 

The acceleration of the point 7 may be expressed by 

- dV a = G A T  + - 
dt 

Without loss of generality, it can be assumed that the plane lateral deformation 
of the vehicle axis coincides at all t imes with the x ,  y-plane; hence vo and 
expressed in the body-fixed system : 

may be 

- 
v =  
0 (A3) 
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where w is the angle velocity of the rotating system. 

The location vector of any point of the (deformed) vehicle axis is given by: 

X 

Since longitudinal deformations will not be considered, the coordinate x is independent 
of time. 

From equations ( A i )  , (A3)  , (A4) and (A5)  the velocity of the point r can be 
obtained as: 

The third vanishing component is omitted in equation ( 6 )  and the following equations. 
acceleration of the point 7 may be concluded from equations (A2)  , (A3) , (A4) , (A5) , 
and (A6) as 

The 

1 a = l j  = [ v o 2 + ~ v o l - ~ 2 y + ~ x + Y  tt 

2 v o l - w  v o 2 - w  x - w y - 2 w  yt 
- 

Since motion relative to the coordinate system does not occur, the center of mass  
remains at all times on the x-axis having the x-coordinate vy and hence 

;=0 
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Therefore, application of (A7)  to the center of mass  yields: 

- a =  
r )  

which represents the acceleration vector of the C. M. 
(AS) to the ith lumped-mass of the system shown by Figure I1  yields: 

Then, application of (A7) and 

Considering the third equation ( 9 )  one may recognize that the third term of (A9)  
Under the assumption of small  oscilla- contains second and third order quantities only, 

tions, this term may be neglected. Now, (A9) can be written 

The three te rms  represent acceleration of the C. M. , acceleration of the ith mass  

Consequently, the inertia forces equation (4) acting on the ith vehicle mass  
because of the vehicle rotation about its C. M. and the relative acceleration of the ith 
mass. 

(Fig. l i b  and i2a) can be expressed by means of equation (AIO) as follows: 

Q. E. D. 
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